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In this communication, we describe the design of a new peptide a b On“_(j
motif that is a hybrid ofs-hairpin andg-helical supersecondary d°g° >QZ%=§‘<
structures, and we present the characterization of this motif using ?J:i:uz H2 ;»};3
circular dichroic (CD), IR, and NMR spectroscopies. Helical (o 2“"}:2 =
segments in peptides and proteins fulfill important functions, g;g'f"g // \‘\ oJN"f 2)-1;‘3,
including scaffolding, molecular recognition, and tailoring of Yooy 2.';}:.0 ws T
electrostatic microenvironment.In addition to the familiar R S ) °“’m§ >

. . Fo — o 8
structures generated from-amino acids, such as, 3;,, and i{:‘" — ?\ B JiEO
polyproline heliced2 much recent interest has focused on helices Hg}i’é >N§“”3§”<'

comprised of5-amino acids$? By contrast,5 helices—helices
formed by peptides composed of alternatingndL-o-amino acids 1 2
(o,L-peptides) _a_nd stabilized b&sheet hqugen bondlﬁ@—ar_e . Figure 1. (a) Boc—(L-Val—D-Val)s—OMe 1 exists in CDC4 solution as a
currently receiving much less notice. This dearth of attention is mixture of interconverting ss and fshelices (b) cyclo{ [(L-Val—p-Val)—
likely due to the conformational promiscuity ¢f helices; for (L-Val—b-Pro—Gly)]>—} 2 comprises two copies of peptide and two
example, a givem,L-peptide often produces a mixture of single- copies of the Seque”ﬁeV’fll—D-PFQ—Ghi (E(GJXEd_ in red) and was designed
stranded (ss), double-stranded (ds) paralfyl and ds antiparallel ' form a single, well-defineg-hairpinfif>-helical species (right). Fat

. oac . and 2, p- and L-residues are shown in bold and normal line width,
(") B-helical forms?a—< Here, we present a strategy for limiting respectively.
the number of conformations available tma-peptide, resulting

in a well-defined, antiparallel species having about 5.6 residues 64 a—

per turn (a5 helix). é PN b—
Figure 1 outlines our approach. We chose to examine aige- LY 5 ;N Comnm

valine peptides in our initial studies because prior work by others 52 1] “\/\

has shown that related sequences atigp-helical conformations E % 0

in the solid stat® but exist in solution as a mixture of intercon- g s 2]

verting ss and ds helices, with3>5-helical forms predominating V:§

(Figure layc Conceptually, we began witht&35-¢ helix composed %‘ “

of two linearp,L-peptide strands and hypothesized that covalently
tying the N and C termini together using tw® turns2 would

constrain the molecule into a singlgs5-5-helical species (Figure i . — - ol 905 K Pentid
1b). .To. test t.his hypothesis, we designed the 22-residue cyclic 5’%“§D2¢|3 (c =Sggcr:1r§/|ﬂ :ago‘ur:?),o (rt?)aggp?i?je\é‘ai?]tsé(oc|3 (c)'z(ell)o nﬁlat,l ¢
f-hairpin peptidecycld{ [(L-Val—p-Val),—(L-Val—p-Pro-Gly)]>— | = 10 4m). (c) Peptide3 in cyclohexaned = ca. 10uM, | = 5 mm).

} 2. Model building indicated that right and left-hand&gP--helical
conformations of2 would be stabilized by 16 and 14 hydrogen
bonds, respectively; therefore, we expected the helical senge of
to be right-handed. As an initial probe of the sequence scope of
the hybrid-hairpinjs-helical motif, we also designeclclo{[(p-
Leu—L-Leu),—(p-Leu—L-Pro—Gly)],—} 3. We note that the chirali-
ties of the corresponding residues2nand 3 are opposite, and,
thus, we anticipated that pepti@avould form a left-handed35-¢
helix, also stabilized by 16 hydrogen bonds.
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near 220 nm and a large positive Cotton effect below 200 nm; these
features agree with the CD spectra of-peptides that form
predominantly left-handet3>-¢-helical specie§ The CD spectrum
of 3in CDCl; (Figure 2b, 10 mM) is almost overlapping with the
spectrum in cyclohexane, indicating ttatas the expected left-
handed{5%-helical structure in both solvents and that this structure
is independent of concentration in a range spanning 3 orders of
Peptide<2 and3 were synthesized on 4-sulfamylbutyryl AM resin - Magnitude (10:M to 10 mM; the CD spectra at and3in CDCly
and cyclized with cleavage from the redif Figure 2 shows the ~ are truncated at 205 nm due to strong absorbance by the solvent at
far-UV CD spectra o2 and 3 in organic solvents. We note that ~ Shorter wavelengths). Pepti@eproved insoluble in cyclohexane,
the f-turn segmentsptPro—Gly and L-Pro—Gly, respectively) ~ butits CD spectrum in CDG(Figure 2a, 10 mM) is nearly a mirror
comprise only 4 of the 22 residuesdand3; therefore, we expect ~ image of the spectrum & in the same solvent. This observation
CD and IR (vide infra) spectra to be dominated by features arising indicates tha® has the expected right-hand&i5t-helical con-

from the putativells5-5-helical regions. The CD spectrum 8fin formation.
cyclohexane (Figure 2c, ca. 1) has a negative Cotton effect The IR spectraof 2 and3 in CDCl; solution (ca. 2 mM) show
amide A bands at 3278 and 3267 chrespectively, corresponding
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*Naval Research Laboratory. to strongly hydrogen-bonded NH group&P°The position of the
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Figure 3. NH and H* region of the 1D'H NMR spectra o2 and3 (295
K, CDCls, residual CHQ at 7.24 ppm is indicated with an asterisk). (a)
Peptide2, 500 MHz, 10 mM. (b) Peptid8, 600 MHz, 12 mM.

amide | band for peptides and proteins is known to be sensitive to
structure? the positions of this band fd2 and3—1635 and 1639 )
Figure 4. (a) A family of 12 low-energy structures calculated fbusing

cm *, respectlvely_-are similar to_those observel()j for.-peptides NMR-derived restraints; the average RMSD to mean for backbone atoms
that form predominantify>®-helical structure$->and are close 50 36 A. (b) Side and top view of the lowest energy structure of the family,
to the theoretical value of 1636 crhcalculated for an idealized  including hydrogen-bonding interactiofsSide chains ofo- and L-Val
135 helix.”e For both2 and 3, we also observed a shoulder near residues point away from the helical axis and are omitted for clarity.
1682 cn1l that is consistent with the amide | parallel component,

the presence of which is a hallmark of well-defined antiparallel This result suggests that in some casesfwarns may be necessary
B-sheet structuré to obtain a uniquéls>S-helical species.

The 1D!H NMR spectra o2 and3 in CDCl; both comprise a We emphasize that the hybri6-hairpinj3-helical constructs
single set of sharp, well-dispersed resonances, with no evidence ofdescribed here were characterized only in nonpolar organic solvents.
interconverting conformers or oligomers (Figure 3). The NH region Given the highly constrained natureénd3 and the compactness
of each spectrumd( 6.44-9.23) shows a total of 10 peaks, in Of the resulting structures, we hypothesize that appropriately
agreement with the expected 2-fold-symmetrical structure of the designed polar derivatives will adopt similar folds in water. We
22-mers. In both cases, eight of these NH peaks appear downfieldare currently working to test this hypothesis by preparing water-
from 7.2 ppm and are independent of concentration in the range Soluble variants of2 and 3 for possible use as ligands for
examined (220 mM); these chemical shifts are consistent with Macromolecular targets and building blocks for new protein
those of hydrogen-bonded NH groups in CRGis observed in architectures. In addition, we are working to more fully define the
closely related peptid&s28aand model systenf8.Thed NH values sequence scope of this new peptide motif.
thus support the existence of 16 hydrogen bonds, as expected for
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